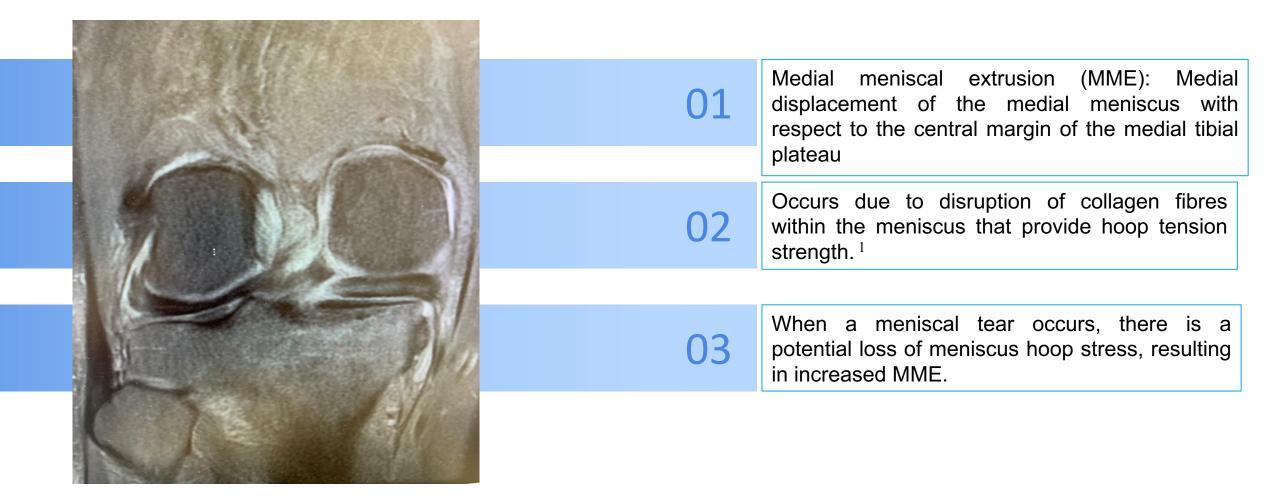


Medial meniscal extrusion is significantly increased in meniscal root tears: A systematic review with meta-analysis

Fong FFJY¹, Ong BWL², Lee YHD²


¹Yong Loo Lin School of Medicine, National University Singapore

²Department of Orthopaedic Surgery, National University Hospital Singapore

Disclosures

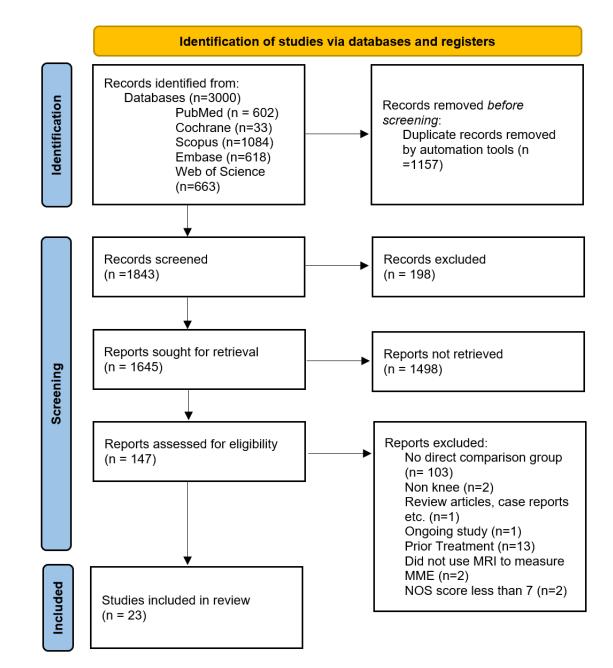
• Dr Dave Lee Yee Han has received speaker fees for Smith & Nephew

Medial meniscal extrusion (MME)

Definitions

Terms	Definitions
Major MME	 Costa et al MME of >3mm⁴ Lerer et al MME of ≥3mm⁵
Absolute MME	MME recorded during weight-bearing MRI
Widely-Displaced MMRT (WD-MMRT)	Measurable tear gap on MRI ⁶
Non-Displaced MMRT (ND-MMRT)	No measurable tear gap on MRI ⁶
Non-OA knees	Kellgren and Lawrence (KL) Grade 0-17
OA knees	Kellgren and Lawrence (KL) Grade 2-47

Aims


To evaluate if MMRT significantly increases MME compared to non-root tears (NRT) and no tears

To determine the clinical outcomes of increased MME

Methodology

- An electronic search of 5 databases using keywords relating to "Meniscus Tear" and "Extrusion"
- Screened 3000 articles and included 23 studies involving 7984 knees in a randomeffects meta-analysis
- All statistical analysis was performed using the Review Manager version 5.3 (Revman, Cochrane Information Management System) software
- Subgroup and sensitivity analysis performed to evaluate for potential sources of heterogeneity

Results

Subgroup analysis: Medial Meniscus Root Tear vs Non-Root Tear (NRT)

- 1. Absolute Meniscal Extrusion (AME)
 - 5 studies, involving 1089 patients
 - MMRT patients had a mean AME of 4.00±1.82 mm
 - NRT patients had a mean AME of 2.79±1.47
 mm
 - MMRT had a **1.12 mm** significantly greater AME than NRT

2. Incidence of Major MME

- 8 studies, involving 2628 patients
- MMRT were 2.51 times more likely to have major MME compared to those who had NRT

Mean Absolute Meniscal Extrusion

	N	IMRT	NRT					Mean Difference		Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	ar IV, Random, 95% Cl					
Choi et al 2010	3.8	1.4	127	2.7	1.3	635	24.7%	1.10 [0.84, 1.36]	2010	10					
Lee et al 2010	3	1	17	3	2	85	20.0%	0.00 [-0.64, 0.64]	2010	10 -					
Park et al 2012	2.94	1.2	24	1.28	0.72	18	20.8%	1.66 [1.08, 2.24]	2012	12					
Ohishi et al 2014	4.17	2.3	44	3.4	1.75	72	17.8%	0.77 [-0.02, 1.56]	2014	14					
Yoon et al 2022	5.7	1.98	36	3.52	1.68	31	16.6%	2.18 [1.30, 3.06]	2022						
Total (95% CI)			248			841	100.0%	1.12 [0.52, 1.71]		◆					
Heterogeneity: Tau ² =	0.36; Cł	1i² = 2'	1.46, df	= 4 (P	= 0.00	03); l² =	= 81%								
Test for overall effect:	Z = 3.67	(P=0	0.0002)	·						-10 -5 0 5 10 Favours [NRT] Favours [MMRT]					

Incidence of Major MME

	MMR	Т	NR	г		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Costa et al 2004	30	71	62	355	14.6%	3.46 [2.01, 5.96]	2004	
Lerer et al 2004	39	61	40	167	13.8%	5.63 [2.99, 10.59]	2004	
Choi et al 2010	50	127	77	635	15.5%	4.71 [3.07, 7.22]	2010	
Lee et al 2010	10	17	47	85	10.1%	1.16 [0.40, 3.32]	2010	
MacFarlane et al 2017	22	42	63	182	13.4%	2.08 [1.05, 4.09]	2017	
Goto et al 2018	80	136	196	408	15.8%	1.55 [1.04, 2.29]	2018	
Liu et al 2020	9	55	46	220	12.4%	0.74 [0.34, 1.62]	2020	- _
Yoon et al 2022	35	36	22	31	4.4%	14.32 [1.70, 120.93]	2022	
Total (95% CI)		545		2083	100.0%	2.51 [1.49, 4.23]		◆
Total events	275		553					
Heterogeneity: Tau ² = 0.4	41; Chi ^z =	36.02,	df = 7 (P	< 0.00	001); I 2 =	81%		0.01 0.1 1 10 100
Test for overall effect: Z =	= 3.46 (P =	= 0.000	5)					Favours [NRT] Favours [MMRT]

Results

Subgroup analysis: WD-MMRT vs ND-MMRT

- 1. Absolute Meniscal Extrusion (AME)
 - 3 studies involving 250 patients
 - WD-MMRT patients had a mean AME of 4.41±1.08 mm
 - ND-MMRT patients had a mean AME of 3.67±1.20 mm
 - WD-MMRT had a **1.01 mm** significantly greater AME than ND-MMRT

Mean Absolute Meniscal Extrusion

Maan Ahaaluta Manisaal Extrusion

	WD	WD-MMRT ND-MMRT				т		Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI Yea		IV, Random, 95% Cl			
Bin et al 2016	4.58	1.08	20	3.67	1.01	24	28.6%	0.91 [0.29, 1.53] 2016		-			
Kim et al 2019	4.29	1.04	79	3.01	1.35	30	38.7%	1.28 [0.75, 1.81] 2019					
Young Kim et al 2019	4.47	1.12	86	3.68	0.9	11	32.7%	0.79 [0.21, 1.37] 2019		-			
Total (95% CI)			185			65	100.0%	1.01 [0.68, 1.35]		•			
Heterogeneity: Tau ² = 0 Test for overall effect: 2	,		,	· ·	-10	-5 0 5 10 Favours [ND-MMRT] Favours [WD-MMRT]							

Subgroup analysis involving patients with MMRT vs No Meniscal Tears

- 2. Absolute Meniscal Extrusion (AME)
 - 5 studies involving 449 patients
 - MMRT patients had a mean AME of 4.07±1.93 mm
 - No Meniscal Tears patients had a mean AME of 2.18±1.43
 mm
 - MMRT had a **2.13 mm** significantly greater AME than No Meniscal Tears

	IMRT		No	o Tear		Mean Difference		Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl		
Park et al 2012	2.94	1.2	24	1.22	1.12	25	19.6%	1.72 [1.07, 2.37]	2012			
Ohishi et al 2014	4.17	2.3	44	1.63	1.61	72	18.7%	2.54 [1.77, 3.31]	2014			
Kim et al 2020	2.6	0.78	23	0.63	0.43	17	21.2%	1.97 [1.59, 2.35]	2020			
Hishashi et al 2022	4.02	1.12	48	3.11	1.11	103	21.1%	0.91 [0.53, 1.29]	2022			
Yoon et al 2022	5.7	1.98	36	2.06	0.85	57	19.4%	3.64 [2.96, 4.32]	2022			
Total (95% CI)			175			274	100.0%	2.13 [1.27, 2.99]		•		
Heterogeneity: Tau ² =	0.88; Cl	ni² = 52	2.98, df	= 4 (P ·	< 0.00	001); l²	= 92%					
Test for overall effect:	Z = 4.84	(P < (0.00001)		,.				-4 -2 0 2 4 Favours [No Tear] Favours [MMRT]		

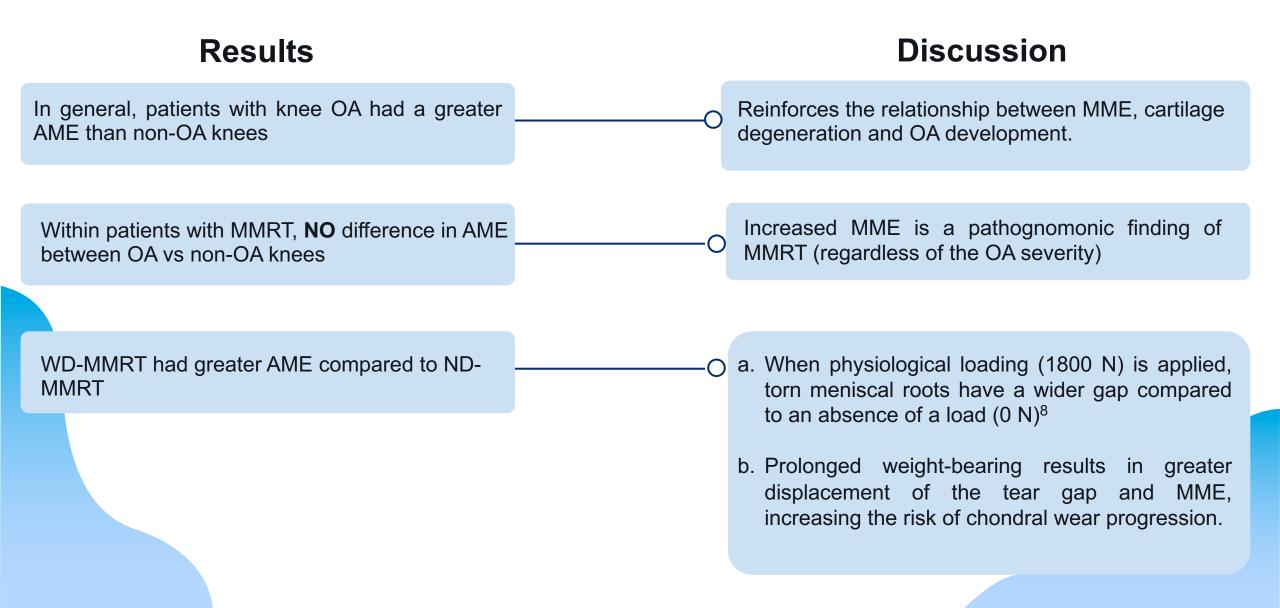
Results

Subgroup analysis: OA vs Non-OA Knees

- 1. Absolute Meniscal Extrusion (AME)
 - 5 studies, involving 1211 patients
 - Patients with OA had a mean AME of 3.27±1.95 mm
 - Patients with non-OA had a mean AME of 2.33±1.53 mm
 - OA patients had a **0.73mm** significantly greater AME than non-OA patients

2. Incidence of Major MME

- 3 studies, involving 4969 patients
- OA patients were 3.86 times more likely to have major MME compared to non-OA patients


Mean Absolute Meniscal Extrusion

	Non-OA OA						Mean Difference		Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year		IV, I	Random, 9	5% CI	
2.3.1 Studies that did	not stra	tify ac	cordin	g to ty	pe of r	nensic	al tears							
Crema et al 2010	3.5	1.1	94	4.5	1.8	58	18.3%	-1.00 [-1.51, -0.49]	2010			-		
Emmaneul et al 2016	1.29	0.99	232	1.56	1.22	206	23.1%	-0.27 [-0.48, -0.06]	2016			•		
Goto et al 2018 Subtotal (95% CI)	3	0.9	42 368	4.17	1.47	148 412		-1.17 [-1.53, -0.81] -0.79 [-1.44, -0.14]	2018			•		
Heterogeneity: Tau ² = 0 Test for overall effect: Z				= 2 (P <	0.000	1); I² =	91%							
2.3.2 Studies that stra	tified in	to MM	RT											
Joen et al 2019	3.66	0.91	29	3.9	1	57	20.0%	-0.24 [-0.66, 0.18]	2019			+		
Dong et al 2020 Subtotal (95% CI)	3.97	1.35	40 69	5.04	1.45	59 116	17.5% 37.5%	-1.07 [-1.63, -0.51] -0.63 [-1.45, 0.18]	2020			•		
Heterogeneity: Tau ² = 0 Test for overall effect: Z				1 (P = (0.02);	² = 82%	6							
Total (95% CI)			437			528	100.0%	-0.73 [-1.17, -0.29]				•		
Heterogeneity: Tau ² = 0 Test for overall effect: Z Test for subgroup differ	= 3.23	(P = 0	.001)							-10	-5 Favours	0 [OA] Favo	5 5 Durs [Non-OA	10 .]

Incidence of Major MME

	OA		Non-(AC		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Ding et al 2007	11	21	41	273	24.0%	6.22 [2.48, 15.60]	2007	
Teichtahl et al 2017	771	2249	207	2120	46.7%	4.82 [4.08, 5.70]	2017	■
Ozdemir et al 2019	177	274	16	32	29.3%	1.82 [0.87, 3.81]	2019	+
Total (95% CI)		2544		2425	100.0%	3.86 [2.04, 7.28]		•
Total events	959		264					
Heterogeneity: Tau² = Test for overall effect:	•			P = 0.0	3); I ≈ = 70	%		0.01 0.1 1 10 100 Favours [Non-OA] Favours [OA]

Discussion: Subgroup analysis for patients with MMRT

Unclassified, Non-Sensitive

Discussion: Causes of Increased MME in Non meniscal tears and Non OA knees

- 1. No meniscal tears and non-OA knees had a mean MME of **2.18±1.43mm** and **2.33±1.53mm** respectively.
- 2. This may be related to a variety of possible etiologies:
 - a. Meniscal degeneration → meniscus increases in size due to the formation of microcyst and separation of fibrils, altering the meniscus ability to resist hoop strain⁹
 - b. Varus malalignment
 - i. When structurally intact, the meniscus can offset the influence of the varus alignment
 - ii. In meniscus degeneration or with a root tear, varus malalignment becomes significant, increasing the risk of OA progression¹⁰.
 - c. Obese individuals \rightarrow nearly 5x more likely to have increased MME¹¹
 - d. Past knee injury \rightarrow nearly 4x more likely to have increased MME¹¹

Discussion: Future Directions

- Increased MME in an MMRT can be likened to a "total meniscectomy" ¹²
- Root repair achieves superior clinical outcomes compared to partial meniscectomy.¹³
- However, 33.5% of patients treated by meniscal repair underwent conversion to total knee arthroplasty within 10 years¹⁴
- Pre-operative varus alignment and increased post-operative MME are poor prognostic factors of meniscus repair¹⁵
- Currently, root repairs does not significantly decrease postoperative MME¹⁶ and OA progression¹⁷

Conclusion

- 1. Patients with MMRT have higher MME compared to other types of meniscal tears and those without any meniscal tears.
- 2. Patients with knee OA were more likely to have higher MME compared to Non-OA.
- 3. Given the results, the authors recommend that meniscal extrusion be routinely measured in patients to aid with diagnosing, decision-making and prognostication for patients with MMRTs.

References

- 1. Adams JG, McAlindon T, Dimasi M, Carey J, Eustace S. Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. *Clin Radiol.* 1999;54(8):502-506.
- 2. Choi CJ, Choi YJ, Lee JJ, Choi CH. Magnetic Resonance Imaging Evidence of Meniscal Extrusion in Medial Meniscus Posterior Root Tear. Arthroscopy-the Journal of Arthroscopic
- 3. Magee T. MR findings of meniscal extrusion correlated with arthroscopy. *Journal of Magnetic Resonance Imaging*. 2008;28(2):466-470.
- 4. Costa CR, Morrison WB, Carrino JA. Medial meniscus extrusion on knee MRI: Is extent associated with severity of degeneration or type of tear? *American Journal of Roentgenology*. 2004;183(1):17-23.
- 5. Lerer DB, Umans HR, Hu MX, Jones MH. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. *Skeletal Radiol.* 2004;33(10):569-574.
- 6. Bin SI, Jeong TW, Kim SJ, Lee DH. A new arthroscopic classification of degenerative medial meniscus root tear that correlates with meniscus extrusion on magnetic resonance imaging. *Knee*. 2016;23(2):246-250.
- 7. Teichtahl AJ, Cicuttini FM, Abram F, et al. Meniscal extrusion and bone marrow lesions are associated with incident and progressive knee osteoarthritis. Osteoarthritis Cartilage. 2017;25(7):1076-1083
- 8. Hein CN, Deperio JG, Ehrensberger MT, Marzo JM. Effects of medial meniscal posterior horn avulsion and repair on meniscal displacement. *Knee.* 2011;18(3):189-192.
- 9. Hajek PC, Gylys-Morin VM, Baker LL, et al. The high signal intensity meniscus of the knee. Magnetic resonance evaluation and in vivo correlation. *Invest Radiol.* 1987;22(11):883-890.
- 10. Kozaki T, Fukui D, Yamamoto E, et al. Medial meniscus extrusion and varus tilt of joint line convergence angle increase stress in the medial compartment of the knee joint in the knee extension position -finite element analysis. *Journal of Experimental Orthopaedics*. 2022;9(1):49
- 11. Ding C, Martel-Pelletier J, Pelletier JP, et al. Knee meniscal extrusion in a largely non-osteoarthritic cohort: association with greater loss of cartilage volume. Arthritis Res Ther. 2007;9(2):R21.
- 12. Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. *J Bone Joint Surg Am.* 2008;90(9):1922-1931.
- 13. Chung KS, Ha JK, Ra HJ, Yu WJ, Kim JG. Root Repair Versus Partial Meniscectomy for Medial Meniscus Posterior Root Tears: Comparison of Long-term Survivorship and Clinical Outcomes at Minimum 10-Year Follow-up. Am J Sports Med. 2020;48(8):1937-1944.
- 14. Faucett SC, Geisler BP, Chahla J, et al. Meniscus Root Repair vs Meniscectomy or Nonoperative Management to Prevent Knee Osteoarthritis After Medial Meniscus Root Tears: Clinical and Economic Effectiveness. *Am J Sports Med.* 2019;47(3):762-769.
- 15. Chung KS, Ha JK, Ra HJ, Kim JG. Preoperative varus alignment and postoperative meniscus extrusion are the main long-term predictive factors of clinical failure of meniscal root repair. *Knee Surg Sports Traumatol Arthrosc.* 2021;29(12):4122-4130.
- 16. Chung KS, Ha JK, Ra HJ, Kim JG. A meta-analysis of clinical and radiographic outcomes of posterior horn medial meniscus root repairs. *Knee Surg Sports Traumatol Arthrosc.* 2016;24(5):1455-1468.
- 17. Chung KS, Ha JK, Ra HJ, et al. Pullout fixation for medial meniscus posterior root tears: clinical results were not age-dependent, but osteoarthritis progressed. *Knee Surg Sports Traumatol* Arthrosc. 2019;27(1):189-196.