

Does rotator cuff tear morphology affect clinical outcomes post surgical repair in large to massive tears?

Names: (1) Mark HX Yeo (2) Shawn JS Seah (3) Merrill Lee (4) Denny TT Lie

Department of Orthopaedic Surgery, Singapore General Hospital, 1 Outram Road, Singapore

Disclosure

The authors have no conflict of interest to declare

Background

- Rotator cuff tear morphology is an important predictor of cuff repair outcomes as it affects repair technique
- Previous Cuff tear classification Systems:
 - McLaughlin: Transverse; Vertical; Retracted
 - DeOrio and Cofield: Length of greatest diameter of tear
 - Davidson and Burkhart: Geometric classification (crescent-shaped, U-shaped, L-shaped)
- Few studies investigated tear morphologies specifically in large to massive tears, where failure rates and clinical outcome remained suboptimal
- <u>Kim et al</u>: Site and direction of tear affects direction in which the cuff is pulled to bone during surgical repair

Study Aim and Hypothesis

Study Aims

- To propose an updated classification system for describing tear morphology, along with the corresponding repair techniques
- To investigate the effect of the tear morphology on clinical outcomes and retear rates of large to massive tears

Hypothesis

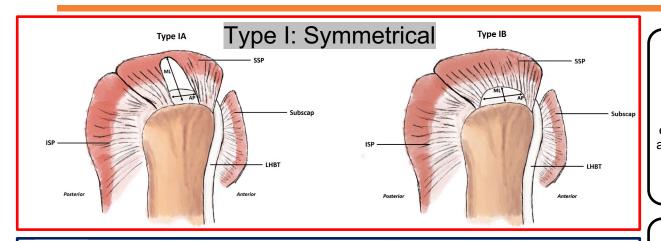
 Clinical outcomes would differ between the various tear morphologies, with symmetrical tears patterns having better outcomes post-operatively

Study Design

Inclusion and exclusion criteria

- Inclusion Criteria
 - o Patients aged ≥21 who underwent cuff repair
 - Full thickness, large to massive tears (≥3cm)
- Exclusion
 - Small and medium tears
 - Partial thickness tears
 - Isolated subscapularis tears
 - Previous surgery on affected shoulder
 - Other non-rotator cuff issues on affected shoulder

Outcomes measured


- Follow up 3, 6, 12 and 24 months postoperatively
- Functional outcome sores
 - Oxford shoulder score (OSS)
 - Constant Shoulder Score (CSS)
 - University of California at Los Angeles Shoulder Score (UCLASS)
 - O Compared both absolute scores as well as pre- to post-operative change
- Retear rates

DeOrio and Cofield	
Small	<1cm
Medium	1-3cm
Large	3-5cm
Massive	>5cm

Classification of Rotator Cuff Tear Patterns

Type IIB

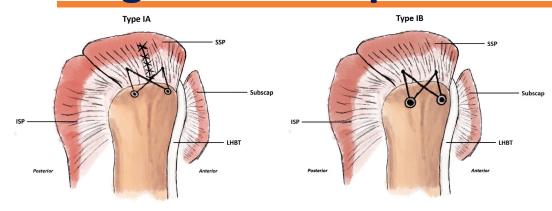
Type II: Asymmetrical

Type I: Apex at the center of the base without preferential extension of the tear anterior or posteriorly

Type IA: ML > AP diameter (similar to U-shaped tears)

Type IB: AP > ML diameter (similar to crescentshaped tears

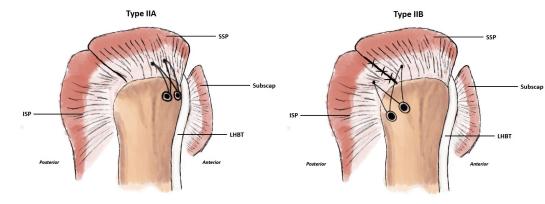
Type II: Tears
detach from the
greater tuberosity in
an asymmetrical
manner and extent
anterior or
posteriorly


Type IIA: Anterior extension towards rotator interval

Type IIB: Posterior extension into infraspinatus

6

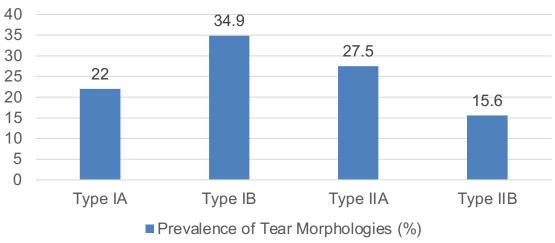
Type IIA


Surgical Technique

All tendon-to-bone repairs were performed via **double-row technique**

Type IA: Margin convergence technique was utilized. The converged margin was then mobilized in the medial-to-lateral direction and repaired to bone.

Type IB: Tendon at the medial apex of the tear was mobilized medio-laterally and directly repaired to bone


Type IIA: The posterior leaf was mobilised in the obliqueanterior direction and directly repaired to the anterior bone bed, re-establishing the rotator interval.

Type IIB: Margin convergence with the infraspinatus was performed for tears with excessive longitudinal split. The anterior leaf was then mobilised in the oblique-posterior direction and repaired to the posterior bone bed

Results - Overview

- A total of 109 cases of large to massive tears were included
- No significant difference in baseline demographic and pre-operative outcome scores

Results – Tear Morphology

- All groups showed **statistically significant improvement** from preoperative scores in all 3 outcome measures at 24-months (p<0.001)
- No significant differences in absolute postoperative outcome scores and pre- to postoperative change between the groups at 6, 12, and 24 months
- No significant difference in retear rates between the various tear morphologies

Implications of Findings

- Identifying the tear morphology and providing the corresponding repair technique can lead to significant clinical improvement at long term follow up
- No difference between the various tear morphologies which is concordant with existing literature:
 - Park et al compared crescent/L-shaped tears with U shape tears and found no difference
 - Watson et al compared outcomes between crescent, U shape, and L-shaped tears and found no difference as well
- Retear rates across of 4 types of tear morphology ranged from 10.5% to 29.4%, which is lower than reported rates for arthroscopically repaired large to massive rotator cuff tears
 - Meshram et al: 39% retear rate
 - Sugaya et al: 40% retear rate

Limitations

- Retrospective in nature
- Substantial heterogeneity within the identification of tear morphology as this can be subjective
- Did not evaluate fatty degeneration pre-operatively on MRI – an important consideration since it affects post-operative repair integrity

Conclusion

- A robust system of classification for rotator cuff is essential as it can guide surgical management and serve as a basis for communication between orthopedic surgeons/radiologists
- Low incidence of retear in the current sample shows the potentially favorable use of this classification to guide surgical repair

References

- 1. McLaughlin HL. LESIONS OF THE MUSCULOTENDINOUS CUFF OF THE SHOULDER: I. The Exposure and Treatment of Tears with Retraction. *JBJS*. 1944;26(1)
- 2. DeOrio JK, Cofield RH. Results of a second attempt at surgical repair of a failed initial rotator-cuff repair. *J Bone Joint Surg Am*. Apr 1984;66(4):563-7.
- 3. Davidson J, Burkhart SS. The geometric classification of rotator cuff tears: a system linking tear pattern to treatment and prognosis. *Arthroscopy*. Mar 2010;26(3):417-24. doi:10.1016/j.arthro.2009.07.009
- 4. Kim HM, Dahiya N, Teefey SA, Keener JD, Galatz LM, Yamaguchi K. Relationship of tear size and location to fatty degeneration of the rotator cuff. *The Journal of bone and joint surgery American volume*. 2010;92(4):829-839. doi:10.2106/JBJS.H.01746
- Park JY, Jung SW, Jeon SH, Cho HW, Choi JH, Oh KS. Arthroscopic repair of large U-shaped rotator cuff tears without margin convergence versus repair of crescent- or L-shaped tears. Am J Sports Med. Jan 2014;42(1):103-11. doi:10.1177/0363546513505425
- 6. Watson S, Allen B, Robbins C, Bedi A, Gagnier JJ, Miller B. Does the Rotator Cuff Tear Pattern Influence Clinical Outcomes After Surgical Repair? *Orthop J Sports Med.* Mar 2018;6(3):2325967118763107. doi:10.1177/2325967118763107
- 7. Meshram P, Liu B, Kim SW, Heo K, Oh JH. Revision Rotator Cuff Repair Versus Primary Repair for Large to Massive Tears Involving the Posterosuperior Cuff: Comparison of Clinical and Radiological Outcomes. *Orthopaedic Journal of Sports Medicine*. 2021/04/01 2021;9(4):2325967121998791. doi:10.1177/2325967121998791
- 8. Sugaya H, Maeda K, Matsuki K, Moriishi J. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. *J Bone Joint Surg Am*. May 2007;89(5):953-60. doi:10.2106/jbjs.F.00512

SingHealth **DukeNUS**