



International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine

#### Respective roles of the ACL and the medial structures on the control of anterior translation and rotations of the knee

Cadaveric study of 29 knees with the Dyneelax®

GUEGAN Baptiste MD, COMMON Harold, PhD, University Hospital, Rennes, France

ROBERT Henri MD, Haut Anjou Hospital, Château-Gontier, France



Corresponding author: <u>henri.robert36@gmail.com</u>



## Disclosure: no conflict of interest

### Introduction

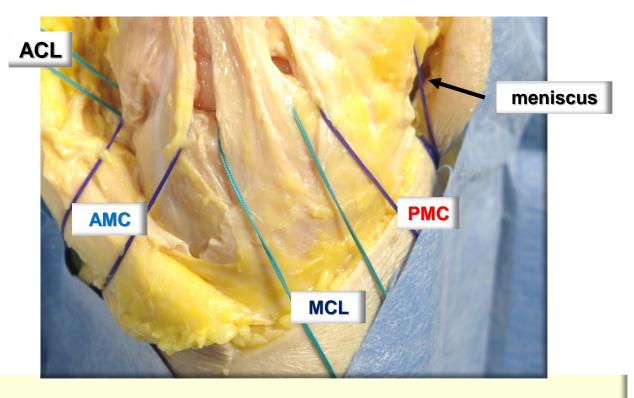
#### Structures of the medial plane

(Woo S, 1999, Robinson J, 2004, Cinque ME, 2017)

- Anteromedial capsule (AMC)
- Medial Collateral Ligament (MCL)
- Postero medial capsule (PMC)
- Capsular medial meniscal junction (MM)

#### PMC M M SMCL M C M M

#### Medial structures lesions are frequently associated with an ACL rupture

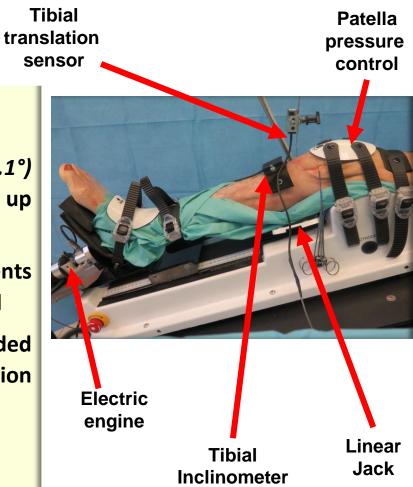

(67% of MRI, Willinger L, 2022)

- Risk of re-rupture of isolated ACL reconstruction
- Risk of residual laxity
- Risk of residual pain

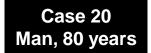
**Objective**: determine the respective roles of the ACL and the different components of the medial plane in controlling anterior translation and medial and external rotation

## Method

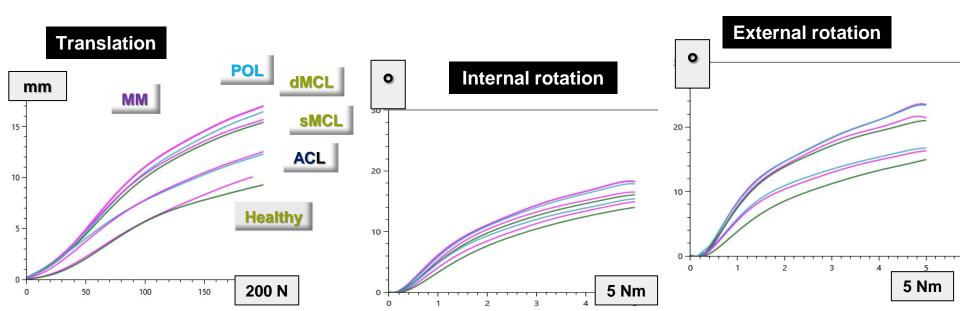
#### Medial view of a right knee




- \* 29 lower limbs were disarticulated at the hip and submitted to the protocol
- \* Each structure: ACL, AMC, sMCL, dMCL, PMC and the posterior segment of the MM, were cut sequentially


### Material

\* Dyneelax<sup>®</sup>laximeter (*precisions of 0.1 mm and 0.1*°) *at* 30° of flexion, forces up to 200 N and torques up to 5 N/m in internal and external rotations


- \* The healthy knee is tested and the displacements after the sectioning of each structure are recorded
- \* Translations (mm) and rotations (°) are recorded (absolute values) and the gain is calculated in relation to the healthy knee (relative values)
- \* Holm-Sidak multiple comparison test (p<0.05)







## Absolute values curves in translation (mm) or rotation (°) according to the forces and torques



## Results in absolute values

|                 | Translation (mm) | I R (°) | E R (°) |
|-----------------|------------------|---------|---------|
| ACL             | 2.95             | 1.35    | 1       |
| AMC             | 0.55             | 0.74    | 0.8     |
| sMCL            | 0.56             | 0.55    | 1.38    |
| dMCL            | 0.52             | 0.46    | 1.78    |
| POL             | 0.51             | 1.45    | 1.29    |
| Medial meniscus | 0.89             | 0.7     | 0.83    |

# **Results in relative values (%)**

|                 | Translation (%) | I R (%) | E R (%) |
|-----------------|-----------------|---------|---------|
| ACL             | 37.5            | 10.8    | 7.8     |
| AMC             | 6.9             | 6.3     | 6.4     |
| sMCL            | 6.3             | 4.2     | 9.2     |
| dMCL            | 7.1             | 3.7     | 13.2    |
| POL             | 7               | 13.9    | 11.1    |
| Medial meniscus | 11.6            | 8       | 8.5     |

#### Discussion

#### **References** (at 30° of flexion) :

Griffith CJ, 2009. Chahla J, 2021. Swinford S, 2021. Laprade R, 2012

- ACL: control of translation and internal rotation
- AMC: not studied
- **sMCL**: control of rotations (I et E) and valgus
- **dMCL:** control of rotation (I and E) and valgus
- POL: control of internal rotation
- LR: control of rotations (I et E)

#### **Our significant results** (p< 0.05) :

- ACL: control of translation and rotations (I and E)
- AMC: control of external rotation
- sMCL: control of external rotation
- dMCL: control of external rotation
- POL: control of rotations (I and E)
- Meniscus: control of translation and internal rotation

### Discussion

| Strengths                                                                         | Limitations                                                 |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Disarticulation and conservation<br>of all soft tissue<br>Number of cadavers (29) | Tests only at 30° of flexion<br>Average age (82 years)      |  |
| Tests on all the structures of the<br>medial plane<br>Precision of the Dyneelax®  | Meniscal lesions on 16 knees<br>No frontal testing (Valgus) |  |

## Conclusion



# All structures of the medial plane are involved in sagittal and rotational control

Precise clinical testing can help to identify the injured ligament structure

#### References

Chahla J, Kunze KN, LaPrade RF, Getgood A, Cohen M, Gelber P (2021) The posteromedial corner of the knee: an international expert consensus statement on diagnosis, classification, treatment, and rehabilitation. Knee Surg Sports Traumatol Arthrosc. 29:2976-2986

**Cinque ME, Chahla J, Kruckeberg BM, DePhillipo NN, Moatshe G, LaPrade RF** (2017) <u>Posteromedial Corner Knee Injuries: Diagnosis,</u> <u>Management, and Outcomes: A Critical Analysis Review.</u> J Bone J Surg Rev. Nov;5(11): e4

Griffith CJ, LaPrade RF, Johansen S, Armitage B, Wijdicks C, Engebretsen L (2009) Medial knee injury: Part 1, static function of the individual components of the main medial knee structures. Am J Sports Med 37:1762-70.

Cojean T (2022) Sensitivity and reproductibility of the Dyneelax<sup>®</sup> knee arthrometer. Science Thesis, University Lyon. France

Laprade RF, Wijdicks CA (2012) Surgical technique: development of an anatomic medial knee reconstruction. Clin Orthop Relat Res. 470: 806-14.

**Robinson JR, Sanchez-Ballester J, Bull AM, Thomas Rde W, Amis AA** (2004) <u>The posteromedial corner revisited. An anatomical description of the passive restraining structures of the medial aspect of the human knee.</u> J Bone Joint Surg Br. 86:674-81.

**Ruiz N, Filippi GJ, Gagnière B, Robert H (2016)** The Comparative Role of the Anterior Cruciate Ligament and Anterolateral Structures in Controlling Passive Internal Rotation of the Knee: A Biomechanical Study. Arthroscopy. 32:1053-62.

**Slocum DB, Larson RL** (1968) <u>Rotatory instability of the knee. Its pathogenesis and a clinical test to demonstrate its presence.</u> J Bone Joint Surg Am. 50:211-25

Willinger L, Balendra G, Pai V, Lee J, Mitchell A, Jones M, Williams A (2022) <u>High incidence of superficial and deep medial collateral ligament</u> injuries in 'isolated' anterior cruciate ligament ruptures: a long overlooked injury. Knee Surg Sports Traumatol Arthrosc. 30:167-175

Woo SL, Debski RE, Withrow JD, Janaushek MA (1999) Biomechanics of knee ligaments. Am J Sports Med. 27:533-43.

Boston Sakos 2023 Massachusetts June 18 - June 21



International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine

mvCongress

#### Respective roles of the ACL and the medial structures on the control of anterior translation and rotations of the knee *Cadaveric study of 29 knees with the Dyneelax*®

Corresponding author: <u>henri.robert36@gmail.com</u>