

Phenotypic Differences In Coronal Alignment In Robot-Assisted Total Knee Arthroplasty Do Not Affect Patient-Reported Outcome Measurements In A Three-Dimensional Computed Tomography Analysis : A Single-Center Cohort Study

T. Kaneko, A. Yamamoto, K. Takada, S. Yoshizawa

Ichinomiya Onsen Hospital

Adult Reconstruction & Sports Medicine Center

Disclosure

No relevant disclosures of conflict of interest

Takao Kaneko MD. PhD

Introduction. 1

35% of cases of early revision after TKA " <u>soft tissue imbalance</u>"

- Instability
 Fehring TK et al. Clin Orthop 2001
- limitation of ROM

Sharkey PF et al. Clin Orthop 2002

loosening
 Berger R et al. Clin Orthop 2001

TKA is a Soft Tissue Procedure

Scott N.W. Insall & Scott Surgery of the Knee. Fifth Edition

Introduction. 2

 The variability in component alignment is well tolerated as long as the soft tissues are balanced
 Lonner JH et al. Int Orthop 2022

Image-free handheld robotic-assisted (RA) surgery with the *Blue Belt Navio* and *CORI surgical system* (Smith & Nephew, Plymouth, MN, USA)

Intraoperatively with "<u>consideration with soft tissue envelope of each patient</u>" over the full range of motion (ROM)

Decision of component alignment and amount of bone resection (Indivisualized approach)

Kaneko T et al. *Knee* 2021 Kaneko T et al. *J Robotic Surgery* 2022

Personalized alignment Lustig S et al. SICOT 2021

Aim

• The purposes of this study

(1) to evaluate whether patients undergoing RA-TKA develop

a variety of postoperative phenotypes in coronal alignment

(2) to compare *postoperative patient reported outcome*

measurements (PROMs) among these phenotypes

• Our hypothesis

Postoperative PROMs would not be affected by phenotypic differences in coronal alignment using RA technique

Materials and Methods.1

Materials and Methods.2

- O Hirschmann proposed "Phenotype"
 - 5 FMA (Femoral mechanical angle)
 - 5 TMA (Tibial Mechanical angle)
 - 7 HKA (Hip Knee ankle angle)

Hirschmann MT et al. KSSTA 2019

- Patient reported outcome measurements
 - 2011 Knee Society Score (patient satisfaction and advanced activities) Scuderi GR et al. *Clin Orthop* 2012
 - 12 items of the Forgotten Joint Score Behrend H et al. J Arthroplasty 2012
 - Patella score

Fellar JA et al. BJJ 1996

at a mean of 15.1 months (12~25) postoperatively

Gap assessment (bone gap ≠ component gap)

Lateral 4.5 - 6.0 mm

 ledial 2.0 - 2.5 mm
 - Do not over tighten lateral gap

 (depending on the size of MFC posterior clearance)
 in flexion

Results

* Preoperative demographic data

Preoperative characteristics	
Age (year)	76.9 (SD 6.9; 51 ~ 90)
Gender (male:female)	13:37
BMI (kg/m ²)	25.5 (SD 4.5; 20.2 ~ 41.5)
Extension (°)	8 (SD 3.1; 0 ~ 16)
Flexion (°)	114 (SD 8.2; 95 ~ 128)
Deformity (°) (+ : varus, - : valgus)	8.0 (SD 8.2; -5 ~ 22)
Follow up periods (month)	15.1 (SD 5.4; 12 ~ 25)

* Absolute (N) and relative distribution (%) of FMA and TMA

FMA			
Groups (°)	Phenotypes	Ν	(%)
87°±1.5°	VARFMA6° (85.5° <fma<88.5°)< td=""><td>0</td><td>0</td></fma<88.5°)<>	0	0
90°±1.5°	VARFMA3° (88.5° <fma<91.5°)< td=""><td>0</td><td>0</td></fma<91.5°)<>	0	0
93°±1.5°	NEUFMA0° (91.5° <fma<94.5°)< td=""><td>12</td><td>24</td></fma<94.5°)<>	12	24
96°±1.5°	VALFMA3° (94.5° <fma<97.5°)< td=""><td>29</td><td>58</td></fma<97.5°)<>	29	58
99°±1.5°	VALFMA6° (97.5° <fma<100.5°)< td=""><td>9</td><td>18</td></fma<100.5°)<>	9	18

TMA			
Groups (°)	Phenotypes	Ν	(%)
81°±1.5°	VARTMA6° (79.5° <tma<82.5°)< td=""><td>0</td><td>0</td></tma<82.5°)<>	0	0
84°±1.5°	VARTMA3° (82.5° <tma<85.5°)< td=""><td>6</td><td>12</td></tma<85.5°)<>	6	12
87°±1.5°	NEUTMA0° (85.5° <tma<88.5°)< td=""><td>11</td><td>22</td></tma<88.5°)<>	11	22
90°±1.5°	VALTMA3° (88.5° <tma<91.5°)< td=""><td>30</td><td>60</td></tma<91.5°)<>	30	60
93°±1.5°	VALTMA6° (91.5° <tma<94.5°)< td=""><td>3</td><td>6</td></tma<94.5°)<>	3	6

* Absolute (N) and relative distribution (%) of HKA

68		Coronal	alignment		Ν	(%)
11			VARhka9°	169.5° <hka<172.5°< td=""><td>3</td><td>6</td></hka<172.5°<>	3	6
11		VARHKA	VARhka6°	172.5° <hka<175.5°< td=""><td>13</td><td>26</td></hka<175.5°<>	13	26
) - ma			VARHKA3°	175.5° <hka<178.5°< td=""><td>19</td><td>38</td></hka<178.5°<>	19	38
37)	Limb phnocyte(HKA)	NEUHKA	NEUHKA0°	178.5° <hka<181.5°< td=""><td>12</td><td>24</td></hka<181.5°<>	12	24
W			VALHKA3°	181.5° <hka<184.5°< td=""><td>3</td><td>6</td></hka<184.5°<>	3	6
N		VALHKA	VALHKA6°	184.5° <hka<187.5°< td=""><td>0</td><td>0</td></hka<187.5°<>	0	0
N.			VALHKA9°	187.5° <hka<190.5°< td=""><td>0</td><td>0</td></hka<190.5°<>	0	0

* Comparison of Phenotypes for PROMs (1) 2011 KSS patient satisfaction (40)

(2) 2011 KSS advanced activities (100)

(3) FJS-12 (100)

(4) Patella score (30)

PROMs werenot statistically different between the FMA, TMA, and HKA phenotypes nonparametric Wilcoxon/Kruskal-Wallis test

Discussion. 1

The principal findings of the present study

- RA techniques that finalize component alignment intraoperatively based on each individual's soft tissue envelope over full ROM led to valgus 3°, valgus 3°, and varus 3° as the most common FMA, TMA, and HKA phenotypes.
- The phenotypic differences in the coronal plane obtained did not affect postoperative PROMs.

A wide variability in coronal alignment

vs

KNEE Coronal Plane Alignment of the Knee (CPAK) classification

A NEW SYSTEM FOR DESCRIBING KNEE PHENOTYPE

MacDessi SJ et al. *BJJ* 2021 n = 250 (plain X-P)

Phenotyping the knee in young non-osteoarthritic knees shows a wide distribution of femoral and tibial coronal alignment

Hirschmann MT et al. KSSTA 2019

Discussion. 2

Reoperations are few and confined to the most valgus phenotypes 4 years after unrestricted calipered kinematically aligned TKA

o KA <mark>198</mark> TKAs

FMA			TMA			HKA		
Phenotypes	Ν	%	Phenotypes	Ν	%	Phenotypes	Ν	%
VAL _{FMA} 6°	7	3.5	VAL _{TMA} 6°	4	2	VAL _{HKA} 6°	15	7.6
VAL _{FMA} 3°	43	21.7	VAL _{TMA} 3°	53	26.8	VAL _{HKA} 3°	48	24.2
NEU _{FMA} 0°	98	49.5	NEU _{TMA} 0°	111	56.1	NEU _{HKA} 0°	74	37.4
VAR _{FMA} 3°	42	21.2	VAR _{TMA} 3°	29	14.6	VAR _{HKA} 3°	47	23.7
VAR _{FMA} 6°	8	4.1	VAR _{TMA} 6°	1	0.5	VAR _{HKA} 6°	14	7.1
Total	198	100	Total	198	100	Total	198	100

• FJS-12 score was not statistically different between the FMA, TMA, and HKA phenotypes.

Howell SM et al. KSSTA 2022

- OKS was not statistically different between the TMA and HKA phenotypes.
- The most varus FMA phenotypes was associated with a greater OKS than other FMA Phenotypes.

at a mean follow-up 4 years

Weakness of this study and Conclusion

- The number of patients was small
- No comparison group
- Postoperative PROMs reflect short-term results
- 3DCT were taken in the supine position

A larger prospective study with a larger number of cases and with medium- and long-term results is needed to further substantiate the present results.

Kaneko T et al. Knee 2023; 41: 274-284

* Conclusion: Coronal alignment classes after robotic-assisted TKA are not associated with variation in PROMs

