

Assessing the Relationship between Knee Joint Biomechanics and Trunk Posture According to Osteoarthritis Severity

<u>Suzuki Y^{1,2},</u> Ohkoshi Y², Kawakami K³, Ukishiro K⁴, Shimizu K⁴, Chida S⁴, Onodera T¹, Iwasaki K⁵, Maeda T², Suzuki S⁶, Kondo E⁷, Iwasaki N¹

¹Dept. of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido Univ., Japan
 ²Dept. of Orthopedic Surgery, Hakodate Orthopedic Clinic, Hakodate, Japan
 ³Dept. of Production Systems Eng., National Institute of Technology, Hakodate College, Hakodate, Japan
 ⁴Dept. of Rehabilitation, Hakodate Orthopedic Clinic, Hakodate, Japan
 ⁵Dept. of Functional Reconstruction for the Knee Joint, Graduate School of Medicine, Hokkaido University
 ⁶Dept. of Complex and Intelligent Systems, Future University, Hakodate, Japan
 ⁶Center for Sports Medicine, Hokkaido University Hospital, Sapporo, Japan

No COI with regard to the current presentation.

DEPARTMENT OF ORTHOPEDIC SURGERY

Knee Osteoarthritis (KOA) and biomechanics

Gait analysis in KOA

- There are many reports on coronal parameters such as knee adduction moment (KAM). Sharma et al. Arthritis Rheum 1998 Miyazaki et al. Ann Rheum Dis 2002
- Recently, sagittal parameters (eg. trunk posture and knee flexion moment (KFM) have been put light for better understanding in KOA.
 Favre et al. OARSI 2013 Meireles et al. PLoS One 2017
- However, three-dimensional joint biomechanics and trunk posture according to severity of medial KOA remains unknown.
- Purpose: To clarify the relationship between three-dimensional joint biomechanics and trunk posture according to severity of KOA.

Subjects

- 75 patients (95 knees) with medial KOA and underwent gait analysis between November 2014 and October 2018
- Radiological classification (Kellgren-Lawrence (KL) classification)

Grade 2	20 patients (24 knees)
Grade 3	25 patients (28 knees)
Grade 4	30 patients (43 knees)

• Exclusion criteria

Those who are unable to walk, have neurological deficit or past history of other orthopaedic operation

Outcome measures

- Background data
 - Age, height, body weight, body mass index (BMI)
- Physical examination
 - Gait speed
 - Knee range of motion
- Radiological evaluation
 - Femoro-tibial angle (FTA)
 - Percentage of mechanical axis (%MA)
 - Posterior tibia slope angle

Outcome measures

Gait analysis

- External knee moment
- Total knee joint moment (TJM)
 - \checkmark TJM = $\sqrt{(KFM^2 + KAM^2 + KRM^2)}$
 - ✓ TJM Peak value
- Relative contributions of each components @maximum TJM
 - ✓ %KFM, %KAM, %KRM
- Trunk flexion angle
- Statistical analysis
 - Bonferroni test for comparing each stage, significance p < 0.05

ex) %KFM = $\frac{KFM^2}{T_JM^2} \times 100$

Gait analysis

- Optical motion capture system
- Self-selected speed
- 3-dimensional gait analysis machine
 - ✓ 8 infrared cameras & 2 force plates (120 Hz each)
- Point Cluster Technique: 6 degrees of knee joint kinematics
- 3 moment components at the knee joint calculated by inverse dynamics
 - ✓ Standardized by height and body weight
- Gait cycle was defined as percentage maximum 100%

Background and Clinical and radiographic assessment data	* : P < 0.05,	† : P < 0.01
--	---------------	--------------

Grade	2	3	4
Age (years)	$60.0 \pm 8.1^*$	62.0 ± 8.2	67.9 ± 10.6*
Sex (Male (knees) :Female (knees))	10 (11) : 10 (13)	11(11) : 14 (17)	6 (9) : 24 (34)
Height (cm)	161.1 ± 7.2	159.8 ± 9.8	155.2 ± 9.2
Body weight (kg)	66.4 ± 11.0	64.7 ± 9.5	65.4 ± 11.3
BMI (kg/m²)	25.5 ± 3.4	25.3 ± 2.6	27.2 ± 4.3
Knee maximum extension angle (°)	-3.1 ± 5.3 * †	$-3.4 \pm 5.6 *$	-7.3 ± 5.1 *†
Knee maximum flexion angle (°)	145.0 ± 5.5 *	143.0 ± 8.5 *	134.9 ± 13.3 *
Gait speed (m/s)	1.2 ± 0.2 ⁺	1.1 ± 0.2	$1.0 \pm 0.2^{+}$
FTA (°)	177.3 ± 1.4 [†]	178.5 ± 2.1 ⁺	180.8 ± 3.0 ⁺
%MA	32.9 ± 9.6 ⁺	28.7 ± 10.9 ⁺	18.3 ± 13.1 ⁺
Posterior tibia slope angle (°)	81.6 ± 3.6	81.7 ± 3.0	80.1 ± 3.3

Results

Moment

 \checkmark KAM was higher in severe grade.

 \checkmark KFM tend to be lower in severe grades at 1st peak

DEPARTMENT OF ORTHOPEDIC SURGERY

Results

✓ Trunk flexion was observed in grade 4 throughout gait cycle

- OA severity and biomechanics
 - Coronal parameters
 - High KAM with severe varus deformity due to elongation of the lever arm of
 the moment.
 Sharma et al. Arthritis Rheum 1998
 - Sagittal parameters; Trunk flexion
 - Compensation for quadriceps weakness due to pain and disuse
 - Flexion contracture

Harato et al. The knee 2008

Miyazaki et al. Ann Rheum Dis 2002

- Spinal degenerative deformity
 - ➡ Trunk flexion ➡ Shortening of the moment lever arm ➡ Low KFM

Debbi et al. BMES 2014 DEPARTMENT OF ORTHOPEDIC SURGERY

KOA progression

Early KOA: pain quadriceps weakness

Sharma et al. JOR 2006

KOA progression

■ Trunk flexion ➡ KFM decrease ➡ quadriceps weakness

- ➡ flexion contracture ➡ kyphotic deformity
- Quadriceps weakness and trunk flexion = important exacerbating factors of KOA
- ✓ Conservative treatment for early KOA may be important for preventing KOA progression.
- Surgical treatment may be effective for severe KOA cases in the point of improving total sagittal imbalance

Conclusion

- We clarified the relationship between three-dimensional joint biomechanics and trunk posture according to severity of medial KOA.
- Relative contribution of each moment components converted from KFM to KAM dominance in sever KOA.
- Flexion contracture and trunk flexion were observed in severe OA.
- Conservative treatment for early KOA for OA progression, and surgical intervention for severe KOA from the perspective of treating spinal disorders may result in improving total sagittal imbalance.

13