Clinical Results and Retear Rates after Arthroscopic Rotator Cuff Repair with Manipulation Under Anesthesia

Yoshitsugu Takeda, MD., Koji Fujii, MD., Naoto Suzue, MD., Yoshiteru Kawasaki, MD., Junichiro Sumitomo, MD., Keisuke Nishidono, MD., Yugen Fujii, MD. Tokushima Red Cross Hospital, Komatsushima, JAPAN

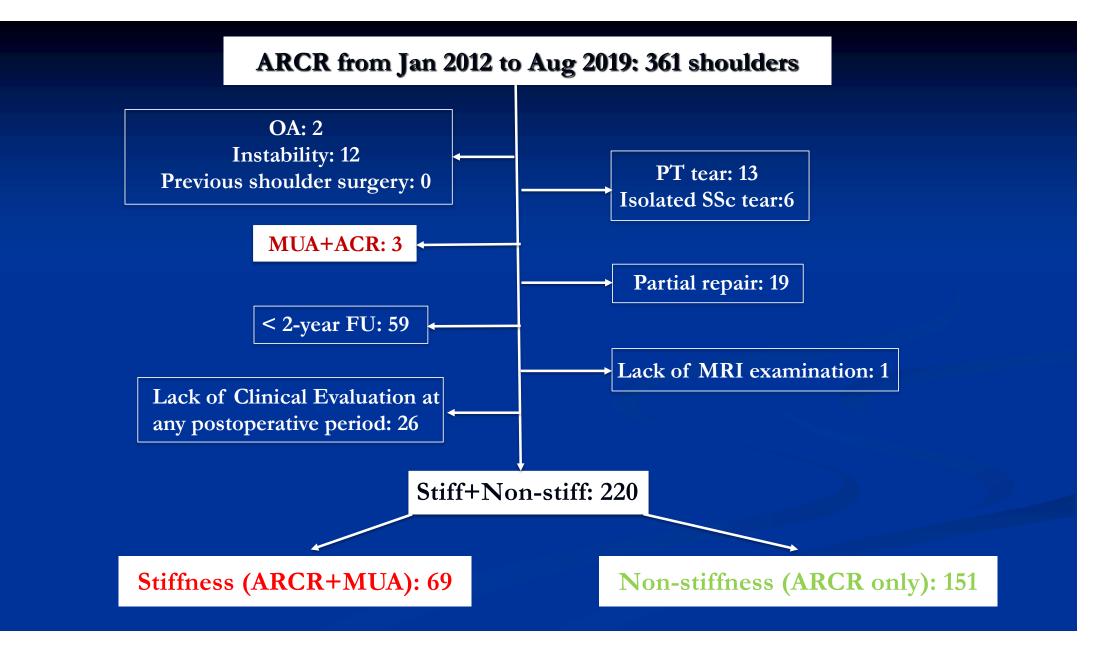
ISAKOS Congress 2023

COI Disclosure Information

Presenter : Yoshitsugu Takeda MD.PhD.

I have no financial conflicts to disclose.

Shoulder stiffness associated with Rotator Cuff Tear (RCT)


- Favorable results in Arthroscopic Rotator Cuff Repair (ARCR) with Manipulation Under Anesthesia (MUA)+Arthroscopic Capsular Release(ACR) have been reported ⁽¹⁻³⁾
- However, several studies^(1,4) indicated that severe and global loss of passive motion, which is highly associated with the primary frozen shoulders (PFS), is not found in the shoulders with full-thickness RCTs
- We presume that ACR, a standard surgical procedure for PFS, is not always necessary to resolve the shoulder stiffness associated with RCTs
- Whether preoperative stiffness affects the rotator cuff healing after ARCR is another debating issue.
- Recently, several studies^(2,3,5) indicated that stiff shoulders are more likely to heal after ARCR than non-stiff shoulders.

Purpose

- To examine whether patients with shoulder stiffness who underwent ARCR combined with MUA alone can achieve comparable clinical results with patients without shoulder stiffness.
- To compare the tendon healing after ARCR between the patients with and without shoulder stiffness.

Hypotheses

• Clinical outcomes and retear rate of patients who underwent ARCR combined with MUA alone are comparable with those of patients without shoulder stiffness.

Evaluation & Stat. Analyses

- PROM:Pre-, Post 3,6,12,24m.
 - Flex, Abd, ER, IR
- Clinical Evaluation:Pre-, Post 6,12,24m.
 - UCLA score
 - JOA(Japanese Orthopaedic Association) score
- MRI at 4~6 m. after ARCR
 - Sugaya classificaion (Failure:Type IV, V)
- Statistical Analyses
 - Student t-test, Mann-Whiney U test
 - Chi-square test, one-way ANOVA
 - P<0.05

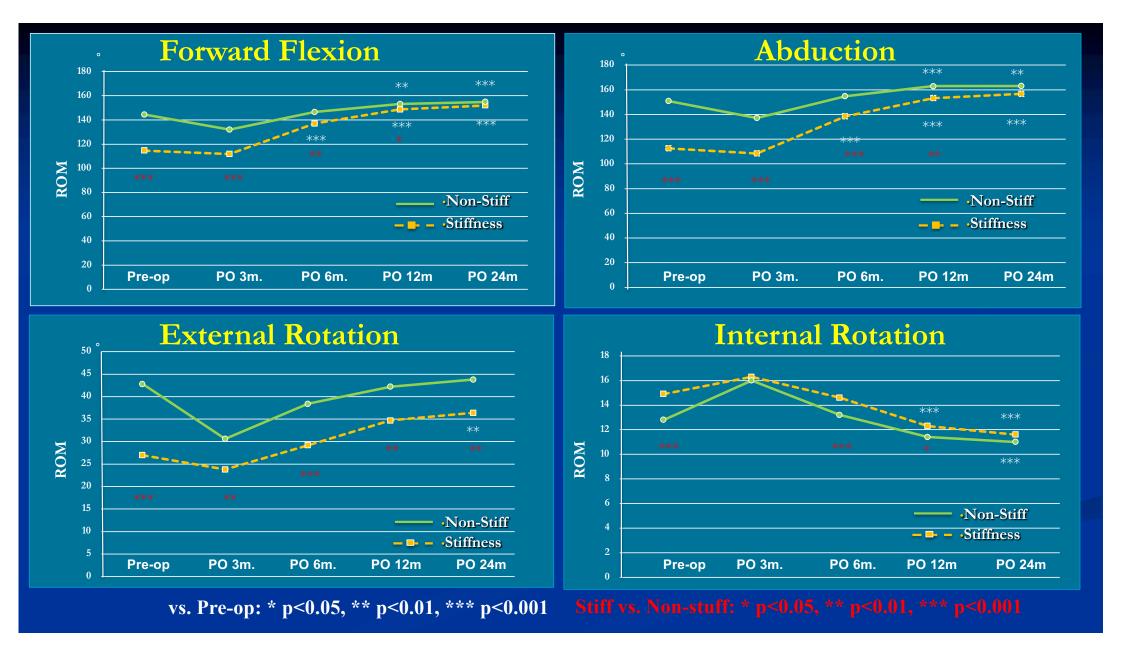
Flex

Abd

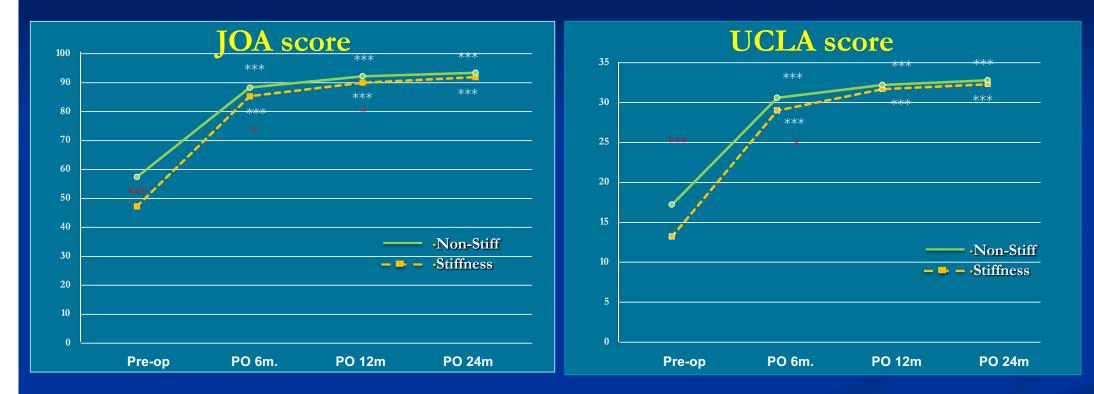
Manipulation Under Anesthesia

(MUA)

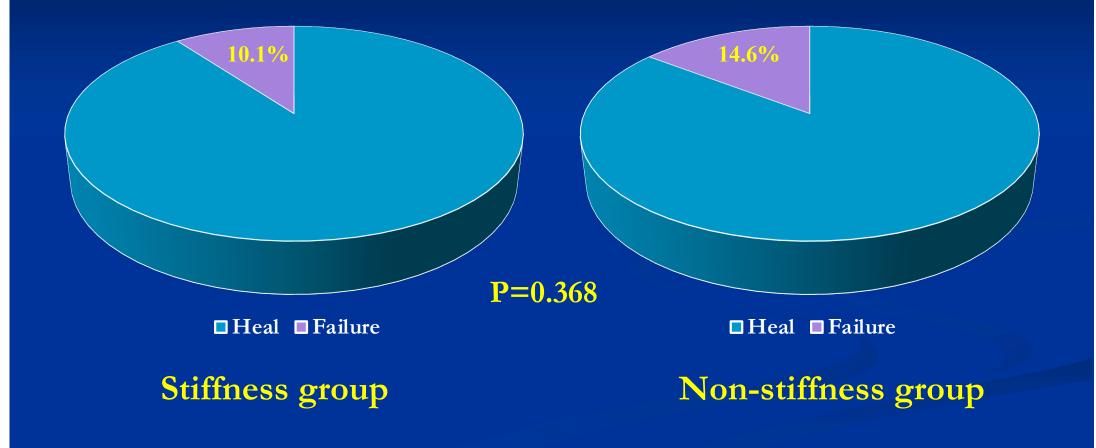
IR

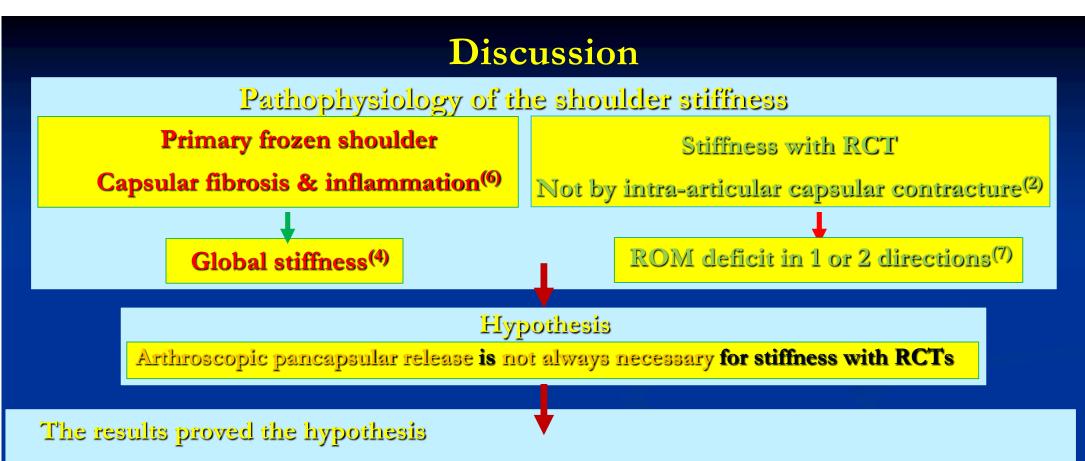

2nd IR

2nd ER



Preoperative Demographics & Intraoperative Findings				
	Stiff (n=69)	Nonstiff(n=151)	p value	
Sex(M/F)	49/20	111/40	0.700	
Age (y)	63.3 ± 9.5	63.9 ± 9.0	0.651	
Follow-up period (mo)	26.6 ± 10.9	26.4 ± 8.3	0.540	
BMI	25.0 ± 4.0	24.6 ± 3.8	0.972	
DM	14 (20.3%)	19 (12.6%)	0.137	
Duration of symptoms	7.5 ± 15.3	9.1±9.8	0.006*	
Trauma history (%)	53 (76.8)	89 (58.9)	0.010*	
Tear size(mm)				
mediolateral	24.5 ± 8.2	22.4 ± 8.3	0.087	
anteroposterior	26.9 ± 9.3	23.3 ± 8.5	0.004*	
LHBT procedure (None/Tenotomy/Tenodesis)				
	60/8/1	107/35/9	0.030*	




Clinical Scores

vs. Pre-op: * p<0.05, ** p<0.01, *** p<0.001 Stiff vs. Non-stuff: * p<0.05, ** p<0.01, *** p<0.001

Tendon Healing after ARCR

- Preoperative stiff shoulders treated with MUA alone showed significant improvement in ROM and clinical outcomes.
- At the final follow-up, clinical outcome scores and ROM except for ER were not significantly different between the stiff and non-stiff groups

Discussion

Healing failure rate after ARCR

	Stiff	Non-stiff	p value
McGrath ⁽⁸⁾	0%	20%	0.009
Kim I-B ⁽²⁾	2.6%	14.7%	0.043
Jeong JY ⁽³⁾	5.3%	12.3%	0.004
Current study	10.1%	14.6%	0.368

 Although preoperative stiffness positively affects RC healing is a need for further study, our results indicated that the preoperative stiffness might not negatively affect RC healing

Conclusion

- Patients with preoperative stiff shoulders who underwent ARCR combined with MUA alone showed significant improvement in ROM and clinical outcome scores.
- Healing failure rate of the stiffness group was not significantly different from that of the non-stiffness group.
- The results suggested that many stiff shoulders associated with rotator cuff tear can be treated with ARCR combined with MUA alone, and arthroscopic capsular release is not always necessary.

References

- 1. Oh JH, et al. Arthroscopy. 2008:983-91
- 2. Kim I-B ,et al. AJSM. 2018:1909-18
- 3. Jeon JY, et al. OJSM. 2020
- 4. Ueda Y et al. JBJS Am 2015: 1233-7

- 5. McGarth JP et al. JSES 2016: 714-22
- 6. Itoi E et al. Arthroscopy 2016: 1402-14
- 7. Iwamoto W et al. Katakansetsu 2013: 771-3
- 8. McGrath JP et al. JSES 2016: 714-22

Tokushima Red Cross Hospital