

Sex Differences in Hip Range of Motion: A Meta-Analysis

Christina Freiberger, MS; Christina M. Thomas, MS; Gregory M. Lupica, BS; Samantha O'Connell, MS; Michaela A. Stamm, MS; Mary K. Mulcahey, MD

Disclosures

Mary K Mulcahey, MD, FAAOS

AAOS: Board or committee member

American Journal of Sports Medicine Electronic Media: Editorial or governing board

American Orthopaedic Association: Board or committee member

American Orthopaedic Society for Sports Medicine: Board or committee member

Arthrex, Inc: Paid consultant; Paid presenter or speaker

Arthroscopy: Editorial or governing board

Arthroscopy Association of North America: Board or committee member

International Society of Arthroscopy, Knee Surgery, and Orthopaedic Sports Medicine: Board

or committee member

Ortho Info: Editorial or governing board

Ruth Jackson Orthopaedic Society: Board or committee member

The Forum: Board or committee member

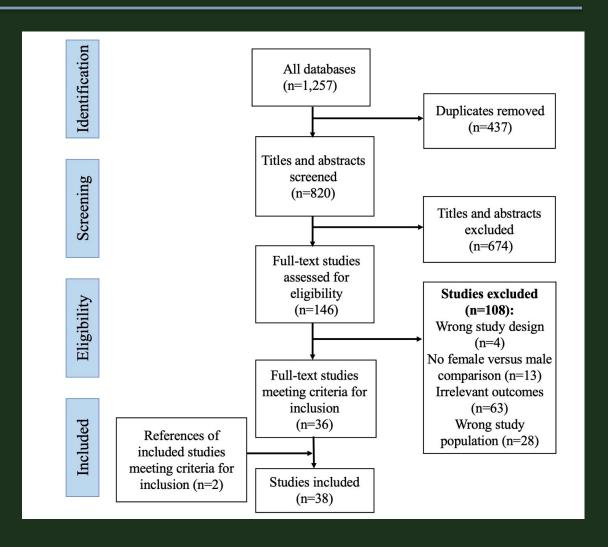
All other authors; No disclosures

Introduction

- Approximately 10% of injuries in sports medicine clinics are hip and/or groin related
- Frequent causes
 - o Femoroacetabular impingement
 - o Labral injury, which is more common in females
 - Hip osteoarthritis
- No known meta-analyses on sex-related differences in hip ROM
- Purpose: to identify baseline hip ROM values in females versus males to help guide hip injury prevention programs.

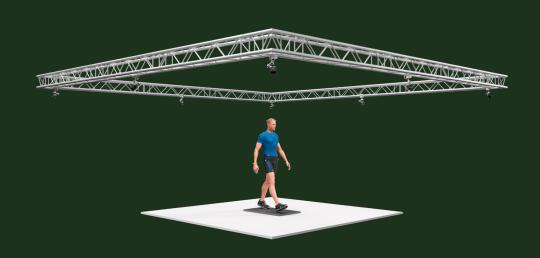
Methods

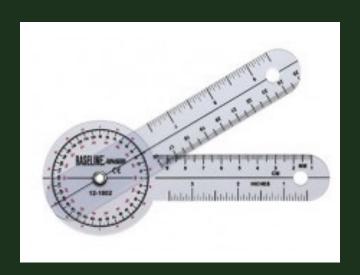
- Systematic review under PRISMA-IPD guidelines
- Sex-specific hip ROM values in healthy adults (≥18 years old) with an average age of ≤40 years old in PubMed, CINAHL, EMBASE from 2000 to 2022
- Primary outcomes: mean difference (D) for...
 - Flexion, extension, abduction, adduction, internal rotation, and external rotation
- For pooled effects sizes: DerSimonian and Laird random-effects model
- Subgroup analyses compared hip ROM by physical activity group



Results

PRISMA style flowchart outlining identification process of included studies





Results

- 3,234 total subjects
- 1,639 (50.1%) females with weighted average age of 25.3 years
- Measurement instruments: camera motion caption system (n=21, 55.3%), electromagnetic sensors (n=5, 13.2%), and goniometer/inclinometer (n=12, 31.6%)

Table 1. Meta-analysis: Mean differences between males and females for ROM exercises

Positive mean difference favors females, negative mean difference favors males, *p < 0.05

- ★ Females significantly greater (p<.05)
- ★ Males significantly greater (p<.05)</p>

	Outcome	No. of Studies	Mean Difference (95% CI)	l ²
*	Flexion	33	2.90 (1.07, 4.73)*	82.1%, p = <0.001
*	Passive Static ROM	9	6.44 (3.86, 9.03)*	81.3%, p = <0.001
*	1 Leg Hop or Jump	3	6.51 (2.77, 10.25)*	0.0%, p = 0.903
*	2 Leg Hop or Jump	2	-9.08 (-12.86, -5.31)*	0.0%, p = 0.569
	2 Leg Drop or Landing	4	0.81 (-6.34, 8.46)	56.8%, p = 0.074
*	1 Leg Squat	5	-0.11 (-7.16, 6.94)	71.4%, p = 0.007
	2 Leg Squat	4	0.76 (-6.13, 7.64)	78.0%, p = 0.003
	Walking	4	3.54 (0.19, 6.90)*	62.6%, p = 0.046
	Jogging, Running	2	-1.74 (-3.55, 0.06)	0.0%, p = 0.798
	Extension	9	0.13 (-1.89, 2.14)	81.2%, p = <0.001
	Passive Static ROM	5	0.72 (-0.70, 2.14)	52.5%, p = 0.077
	1 Leg Squat	2	1.26 (-8.43, 10.94)	91.7%, p = 0.001
*	Walking	2	-3.97 (-7.68, -0.25)*	0.0%, p = 0.360
	Abduction	6	-0.17 (-2.17, 1.82)	80.0%, p = <0.001
*	Passive Static ROM	2	2.85 (0.90, 4.80)*	33.0%, p = 0.222
	1 Leg Hop or Jump	1	-1.40 (-4.54, 1.74)	N/A
	2 Leg Drop or Landing	1	-1.70 (-4.89, 1.49)	N/A
	Walking	2	-1.69 (-2.69, -0.69)*	0.0%, p = 0.439

Table 1 (Cont'd). Meta-analysis: Mean differences between males and females for ROM exercises

Positive mean difference favors females, negative mean difference favors males, *p < 0.05

- ★ Females significantly greater (p<.05)
- ★ Males significantly greater (p<.05)</p>

	Outcome	No. of Studies	Mean Difference (95% CI)	J ²
*	Adduction	22	3.22 (2.49, 3.94)*	45.7%, p = 0.011
	Passive Static ROM	1	3.40 (1.50, 5.30)*	N/A
*	1 Leg Hop or Jump	3	4.54 (1.99, 7.08)*	0.0%, p = 0.519
*	2 Leg Drop or Landing	3	2.74 (0.70, 4.78)*	0.0%, p = 0.646
*	1 Leg Squat	6	4.39 (2.75, 6.04)*	49.5%, p = 0.078
	2 Leg Squat	2	2.48 (-5.24, 10.20)	88.6%, p = 0.003
*	Walking	3	2.60 (1.60, 3.59)*	25.6%, p = 0.261
*	Jogging, Running	4	2.26 (0.82. 3.70)*	38.6%, p = 0.180
*	Internal Rotation	19	2.90 (0.51, 5.30)*	91.5%, p = <0.001
*	Passive Static ROM	5	8.18 (4.23, 12.13)*	91.5%, p = <0.001
	1 Leg Hop or Jump	2	0.52 (-3.57, 4.61)	36.6%, p = 0.209
*	2 Leg Drop or Landing	2	-3.21 (-5.77, -0.64)*	0.0%, p = 0.667
	1 Leg Squat	3	-0.17 (-2.54, 2.19)	22.6%, p = 0.275
	2 Leg Squat	2	1.53 (-6.90, 9.97)	86.4%, p = 0.007
	Walking	1	2.70 (1.17, 4.23)*	N/A
*	Jogging, Running	4	3.16 (0.23, 6.10)*	55.4%, p = 0.081
	External Rotation	9	2.59 (-0.43, 5.61)	89.2%, p = <0.001
*	Passive Static ROM	6	3.50 (0.03, 6.98)*	91.9%, p = <0.001
	1 Leg Hop or Jump	1	-1.90 (-7.30, 3.50)	N/A
	1 Leg Squat	2	0.53 (-5.71, 6.76)	29.2%, p = 0.235

Conclusion

- Provides baseline mobility values for clinicians to compare patient values to
- Results may guide prospective trials to assess impact of various exercises on not only raw patient ROM and strength values, but also patient satisfaction, athletic ability, and injury risk
- In comparing a patient's flexibility in relation to the average female or male, this study will better inform the development of hip injury prevention programs

References

- 1. Paluska SA. An overview of hip injuries in running. *Sports medicine*. 2005;35(11):991-1014.
- 2. Rankin AT, Bleakley CM, Cullen M. Hip joint pathology as a leading cause of groin pain in the sporting population: a 6-year review of 894 cases. *The American journal of sports medicine*. 2015;43(7):1698-1703. PMID: 25964274
- 3. Keogh MJ, Batt ME. A review of femoroacetabular impingement in athletes. *Sports Medicine*. 2008;38(10):863-878. PMID: 18803437
- 4. Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. In. Vol 85: LWW; 2003:1-3.

Thank you!

Feel free to contact our team with any questions:

Christina Freiberger, MS <u>CFreiberger@tulane.edu</u>

Mary K. Mulcahey, MD <u>Mary.Mulcahey.MD@gmail.com</u>

