Increased Lower Extremity Injury Risk Associated with Player Load and Distance in Collegiate Women’s Soccer

Michelle Xiao, BS
Jessica N. Nguyen, BS
Calvin E. Hwang, MD
Geoffrey D. Abrams, MD

Stanford University School of Medicine
Department of Orthopaedic Surgery
Financial Disclosures

- None
Introduction

- Over 13 million girls and women playing organized soccer worldwide
- Increased performance expectations -> increased injury risk
- Technological advances in player load tracking using wearable global positioning system (GPS) units may predict injury risk
- Limited research regarding the impact of workload on injury risk specifically to women’s soccer
Purpose

- To examine the relationship between injury risk and workload collected from wearable GPS units in National Collegiate Athletic Association (NCAA) Division I women’s soccer players
Methods

- Retrospective analysis of prospectively collected GPS data from one NCAA Division I women’s soccer team
- 3 seasons (August - December 2017-2019); 65 individual soccer seasons included
- Workload quantified using commercially available GPS units (Catapult OptimEye, Catapult Sports, Melbourne, Australia)
Methods

- Variables collected: Player load (triaxial acceleration), total distance, high-speed distance (> 8 mph)
- All available players required to wear their GPS unit for training sessions and games. 95.3% compliance (7,654 of 8,032 sessions).
- Only time loss-injuries affecting the lower extremity included. Injuries were classified by body part, contact/non-contact, and by time missed: minimal (1-3 days missed), mild (4-7 days missed), moderate (1-4 weeks missed), or severe (4+ weeks missed).

Player load = \(\sqrt{\frac{(a_x(t) - a_x(t-1))^2 + (a_y(t) - a_y(t-1))^2 + (a_z(t) - a_z(t-1))^2}{100}} \)
Methods (Workload Analysis)

• Data categorized into weekly blocks from Monday to Sunday
• Previous 1-weekly, 2-weekly, 3-weekly, and 4-weekly cumulative loads calculated and grouped by z-score
• Acute to Chronic Workload Ratio (ACWR) calculated 2 ways
 – Rolling average: average acute workload (past 7 days) divided by average chronic workload (past 28 days)
 – Exponentially weighted moving average (EWMR): EWMA acute (N = 7 days) divided by EWMA chronic (N = 28 days)

\[
\text{EWMA}_{\text{today}} = \text{Load}_{\text{today}} \times \lambda_a + ((1 - \lambda_a) \times \text{EWMA}_{\text{yesterday}}
\]

\[
\lambda_a = \frac{2}{N + 1}
\]
Statistical Analysis

• Injury incidence, injury risks
• Logistic regression to compare ACWRs between injured and non-injured players for all GPS variables
• Each player injury matched by season and week to uninjured players for that week. Injured and uninjured cohorts were compared using two-sample t-tests.
Results

<table>
<thead>
<tr>
<th>Injury Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee</td>
<td>12</td>
</tr>
<tr>
<td>ACL Tear</td>
<td>2</td>
</tr>
<tr>
<td>MCL Sprain</td>
<td>6</td>
</tr>
<tr>
<td>Other ligamentous, meniscal, or chondral injury</td>
<td>4</td>
</tr>
<tr>
<td>Foot and Ankle</td>
<td>19</td>
</tr>
<tr>
<td>Lateral Ankle Sprain</td>
<td>8</td>
</tr>
<tr>
<td>High Ankle Sprain</td>
<td>1</td>
</tr>
<tr>
<td>Ankle Fracture</td>
<td>2</td>
</tr>
<tr>
<td>Foot Ligament Sprain/Plantar Fasciitis</td>
<td>6</td>
</tr>
<tr>
<td>Other Foot Injury</td>
<td>2</td>
</tr>
<tr>
<td>Thigh</td>
<td>19</td>
</tr>
<tr>
<td>Hamstring Strain</td>
<td>5</td>
</tr>
<tr>
<td>Quadriceps Strain</td>
<td>8</td>
</tr>
<tr>
<td>Groin Strain</td>
<td>2</td>
</tr>
<tr>
<td>Contusion</td>
<td>4</td>
</tr>
<tr>
<td>Other hip, leg, or thigh injuries</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1: Number of injuries by location during the 2017, 2018, and 2019 seasons

<table>
<thead>
<tr>
<th>Daily ACWR Calculation Type</th>
<th>Load Variable</th>
<th>OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:28 EWMA</td>
<td>PL</td>
<td>0.61 (0.12-2.92)</td>
<td>0.54</td>
</tr>
<tr>
<td>7:28 Simple Moving Average</td>
<td>TD</td>
<td>0.83 (0.18-3.85)</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>HSD</td>
<td>1.24 (0.37-4.10)</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>0.53 (0.15-1.87)</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>TD</td>
<td>0.58 (0.17-1.95)</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>HSD</td>
<td>0.69 (0.26-1.87)</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 2. Odds of sustaining an injury for each one-unit change of ACWR calculated using an EWMA model or simple moving average model. ACWR-Acute to chronic work ratio; OR-Odds ratio; CI-Confidence interval; EWMA-Exponentially weighted moving average; PL-Player load; TD-Total Distance; HSD-High Speed Distance.
Results

Figure 1. Comparison between healthy and injured players for 1, 2, 3, and 4-weekly accumulated (A) player load, (B) total distance, and (C) high speed distance. *P<0.05.
Discussion

- Incidence of lower extremity injury over 3x higher in games compared to practices (11.25/1,000 game hours vs. 3.07/1,000 practice hours).

Use of absolute load vs. ACWR:

- High accumulated total distance over four weeks associated with increase in injury risk for male youth soccer players
 - Bowen et al. BJSM 2017

- Increased ACWR -> increased injury risk in youth and professional men’s soccer. Our study showed no association, but when ACWR is between 0.8-1.3, injury risk is lower.
 - Bowen et al. BJSM 2017, 2020
 - Blanch and Gabbett. BJSM 2016
Limitations

- Both contact and noncontact injuries included
- Majority of injuries occurred during games – substitute players may have lower loads and injury risk
- Only external load tracked
- Data from one team – could not calculate position-specific risks
Conclusions

- Higher accumulated player load and total distance, but not ACWR, are associated with injury in women’s soccer players.
References

Thank You