ISAKOS Congress 2021

2021 ISAKOS Biennial Congress Paper

 

Comparison Of Lower Trapezius And Latissimus Dorsi Transfer For Irreparable Posterosuperior Rotator Cuff Tears: A Dynamic Biomechanical Investigation

Lukas Nawid Muench, MD, Munich GERMANY
Daniel P. Berthold, Association.-Prof., Munich GERMANY
Cameron Kia, MD, Farmington, CT UNITED STATES
ELIFHO OBOPILWE, ME, BSc, Farmington, Connecticut UNITED STATES
Mark P. Cote, PT, DPT, MSCTR, Farmington, CT UNITED STATES
Andreas B. Imhoff, MD, Prof. Emeritus, Sauerlach / Munich, Bavaria GERMANY
Bastian Scheiderer, MD, Munich, Bavaria GERMANY
Bassem T. Elhassan, MD, Boston, MA UNITED STATES
Knut Beitzel, Prof. Dr., Cologne GERMANY
Augustus D. Mazzocca, MS, MD, Waltham, MA UNITED STATES

Department of Orthopedic Surgery, UConn Health Center, Farmington, CT, UNITED STATES

FDA Status Cleared

Summary

In the setting of irreparable posterosuperior rotator cuff tears, transfer of the lower trapezius may restore native glenohumeral kinematics more sufficiently when compared to latissimus dorsi transfer, while preventing loss of abduction motion and superior humeral head migration.

Abstract

Background

Anatomically, lower trapezius transfer (LTT) may be better positioned for restoring the muscular force couple in the setting of irreparable posterosuperior rotator cuff tears (PSRCT) when compared to latissimus dorsi transfer (LDT). The purpose was to evaluate the effect of LTT and LDT on maximum abduction angle (MAA), superior humeral head migration (SHM), and cumulative deltoid forces (CDF) using a dynamic shoulder model. It was hypothesized that the LTT would better restore native glenohumeral kinematics when compared to the LDT.

Methods

Ten fresh-frozen cadaveric shoulders (mean age: 56.5±17.2 years) were tested using a dynamic shoulder simulator. MAA, SHM, and CDF were compared across four conditions: (1) native; (2) irreparable PSRCT; (3) LTT using an Achilles tendon allograft (mean graft thickness: 5.3 ± 0.5 mm), as previously described by Elhassan et al.; and (4) LDT. MAA and SHM were measured using 3-dimensional motion tracking. CDF was recorded in real time throughout dynamic abduction motion by load cells connected to actuators and was calculated as the summation of anterior, middle, and posterior deltoid forces.
A sample size of 6 specimens will provide 80% power to detect a 1° difference in shoulder angle at an a level of 0.05. Repeated measures analysis of variance was performed to examine differences in MAA, SHM, and CDF among the various testing conditions. When significant, post-hoc paired t tests with a corrected alpha using the Holm Bonferroni sequential correction method were performed to determine which pairwise comparisons were statistically significant. The alpha level for all analyses was set at 0.05.

Results

Compared to the native state, the PSRCT resulted in a significant decrease (Delta: -24.1°; P < 0.001) in MAA, with a subsequent significant increase after LTT (Delta: 13.1°; P < 0.001) and LDT (Delta: 8.9°; P < 0.001). LTT achieved a significantly greater MAA than LDT (Delta: 4.2°; P = 0.004). Regarding SHM, both LTT (Delta: -9.4mm; P < 0.001) and LDT (Delta: -5.0mm; P = 0.008) demonstrated a significant decrease when compared to the PSRCT state. LTT also achieved significantly less SHM compared to the LDT (Delta: -4.4mm; P = 0.011). Further, only the LTT resulted in a significant decrease in CDF when compared to the PSRCT state (Delta: -21.3N; P = 0.048), while LTT and LDT showed similar CDF (Delta: -11.3N; P = 0.346). However, none of the techniques was able to restore MAA, SHM, and CDF of the native shoulder (P < 0.001, respectively).

Conclusion

LTT and LDT achieved a significant increase in maximum abduction angle along with significantly less superior humeral head migration compared to the PSRCT state. While LTT required significantly less cumulative deltoid forces compared to the PSRCT state, this was not observed for LDT. Further, LTT prevented loss of abduction motion and superior head migration more sufficiently when compared to LDT. In the challenging treatment of irreparable PSRCTs, transfer of the lower trapezius may restore native glenohumeral kinematics more sufficiently, potentially leading to improved postoperative functional outcomes.