Gustavo A. Rincón, MD – Chairman Department Orthopedic Surgery
Hospital de San José – Bogotá - Colombia
Assistant Professor, Knee Unit – FUCS
President Sports Medicine Chapter
Colombian Orthopedic Society

Practice profile:
- Location: academic medical center (32 residents and 3 fellows)
- Research: Clinical, Basic Science
- Years in practice: 15
- Number of repair / augmentation MCL’s /yr: 6-8
- Number of reconstruction MCL’s /yr: 4-6

Anatomy
- MCL has 3 components
 1. Superficial Medial Collateral Ligament
 - One femoral attachment and two tibial attachments
 2. Posterior Oblique Ligament
 - Fibrous extension of the distal aspect of the semimembranosus
 - Reinforces the posteromedial aspect of the joint capsule
 - Three fascial attachments at the knee joint
 3. Deep Medial Collateral Ligament
 - Thickened of the medial aspect of Joint capsule. Two components:
 - Meniscofemoral and Meniscotibial
- **Biomechanics**
 - Superficial MCL is the primary restraint to valgus laxity of the Knee
 - Posterior Oblique Ligament functions as an internal rotator and valgus stabilizer at between 0 and 30 degrees of knee flexion
 - Complementary relationship between sMCL and POL
 - Deep MCL is valgus stabilizer at 60 degrees and provide restraint against external rotation torque between 30-60 degrees.

 - **Classification**
 - Accordance with the amount of laxity at 30 degrees of knee flexion with a valgus applied moment: (subjective gapping of the medial joint line)
 - Grade 1+ 3 to 5 mm
 - Grade 2+ 6 to 10 mm
 - Grade 3+ > 10 mm

- **Diagnosis**
 - Mechanism of injury involving a contact or non contact valgus force
 - Pain and swelling along the medial aspect of the knee (femoral, midsubstance, tibial)
 - Chronic injuries: Instability with cutting and pivoting maneuvers

- **Image evaluation**
 - Valgus stress radiographs useful for quantitative grading
 - Magnetic Resonance Imaging is commonly used to identify place of injured MCL, other injuries to the knee, trabecular micro fractures and bone bruises

- **Treatment**
 - Non Operative
 - Favorable outcome specially femoral and midsubstance injuries
 - Early controlled motion, protected valgus stress and external rotation (4-6 weeks)
 - Functional rehabilitation program
 - Operative
 - Repair (Acute)
 - Primary repair
 - Recover tibial attach
 - Repair with augmentation (Acute)
 - Reconstruction Techniques (Chronic)
 - “Don’t use hamstrings”

- **Postoperative Rehabilitation**
 - Motion of the knee as soon as posible (High risk of arthrofibrosis)
 - Weight bearing is encouraged when pain has subsided
 - Strengthening exercises
 - Hinged brace for 6-8 weeks
 - Return to sports 6-9 months
Conclusions:
- Not all MCL injuries are the same
- Most isolated MCL injuries are still treated non-operatively
- Surgical decision regarding repair tibial attach is important in acute cases with medial instability.
- Repair, or repair with augment is useful in the setting of multilig. injuries
- Reconstruction just for chronic cases.

Case Examples

1. **MCL repair tibial attach**
 - 26 years
 - ACL-MCL injury during soccer game
 - AL/AM instability
 - Pain at tibial insertion MCL
 - ACL reconstruction + MCL repair
2. **MCL repair**
 - 49 years
 - Motorcycle accident
 - Dislocated Knee
 - ACL/PCL/MCL. No vascular injury.

 - MCL repair
 - Joint capsule
 - Meniscotibial Lig
 - sMCL

 - Protect infrapatellar branch of saphenous nerve
3. **MCL repair & augmentation (POL)**
 - 53 years
 - Construction site accident
 - ACL/PCL/MCL No vascular injury
 - Dislocated Knee
- “Dimple sign”: Buttonholding of femoral condyle through capsule

- MCL repair
 - Joint capsule
 - Meniscofemoral Lig
 - MPFL
 - sMCL

- POL (Augmentation with Allo Tib. Ant.)
REFERENCES

